A Nonlinear Least-Squares Approach for Identi cation of the Induction Motor Parameters

نویسندگان

  • Kaiyu Wang
  • John Chiasson
  • Marc Bodson
  • Leon M. Tolbert
چکیده

—A nonlinear least-squares method is presented for the identi cation of the induction motor parameters. A major dif culty with the induction motor is that the rotor state variables are not available measurements so that the system identi cation model cannot be made linear in the parameters without overparametrizing the model. Previous work in the literature has avoided this issue by making simplifying assumptions such as a “slowly varying speed”. Here, no such simplifying assumptions are made. The problem is formulated as a nonlinear leastsquares identi cation problem and uses elimination theory (resultants) to compute the parameter vector that minimizes the residual error. The only requirement is that the system must be suf ciently excited. The method is suitable for online operation to continuously update the parameter values. Experimental results are presented. Index Terms—Least-Squares Identi cation, Induction Motor, Parameter Identi cation, Resultants

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Parameter Identi cation of an Accurate Nonlinear Dynamical Model for Marine Thrusters

Recently reported nite-dimensional nonlinear thruster models employing empirically determined lift/drag curves have been shown to accurately model both the transient and steady state response of marine thrusters. These reports have employed the standard o -line paradigm for model parameter identi cation: First, real-time sensor data (force, torque, uid velocity) is logged in laboratory experime...

متن کامل

Maximum likelihood estimation and uniform inference with sporadic identification failure

This paper analyzes the properties of a class of estimators, tests, and con…dence sets (CS’s) when the parameters are not identi…ed in parts of the parameter space. Speci…cally, we consider estimator criterion functions that are sample averages and are smooth functions of a parameter : This includes log likelihood, quasi-log likelihood, and least squares criterion functions. We determine the as...

متن کامل

Maximum Likelihood Estimation and Uniform Inference with Sporadic Identication Failure

This paper analyzes the properties of a class of estimators, tests, and con…dence sets (CS’s) when the parameters are not identi…ed in parts of the parameter space. Speci…cally, we consider estimator criterion functions that are sample averages and are smooth functions of a parameter : This includes log likelihood, quasi-log likelihood, and least squares criterion functions. We determine the as...

متن کامل

Frequency-Domain Gray-Box Identification of Industrial Robots, Report no. LiTH-ISY-R-2826

This paper considers identi cation of unknown parameters in elastic dynamic models of industrial robots. Identifying such models is a challenging task since an industrial robot is a multivariable, nonlinear, resonant, and unstable system. Unknown parameters (mainly spring-damper pairs) in a physically parameterized nonlinear dynamic model are identi ed in the frequency domain, using estimates o...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005